Design Principles for Opportunistic Communication in Constrained Computing Environments*

Earl Oliver
PhD Candidate

Tetherless Computing Lab
David R. Cheriton School of Computer Science
University of Waterloo
* Invited paper

September 19, 2008
1 Introduction
 - Motivating opportunistic communication systems
 - Existing systems

2 Constrained computing environment
 - Constrained computing environments
 - Inside an opportunistic connection

3 Design principles for opportunistic communication

4 Conclusions
Outline

1. Introduction
 - Motivating opportunistic communication systems
 - Existing systems

2. Constrained computing environment
 - Constrained computing environments
 - Inside an opportunistic connection

3. Design principles for opportunistic communication

4. Conclusions
Outline

1. Introduction
 - Motivating opportunistic communication systems
 - Existing systems

2. Constrained computing environment
 - Constrained computing environments
 - Inside an opportunistic connection

3. Design principles for opportunistic communication

4. Conclusions
Outline

1. Introduction
 - Motivating opportunistic communication systems
 - Existing systems

2. Constrained computing environment
 - Constrained computing environments
 - Inside an opportunistic connection

3. Design principles for opportunistic communication

4. Conclusions
Capacity of opportunistic communication systems is dependent on our ability to maximize communication during opportunistic connections.

Developing in low cost, low power constrained computing environments has unique design challenges.

Lessons learned: design principles for opportunistic communication.
Take home points

- Capacity of opportunistic communication systems is dependent on our ability to maximize communication during opportunistic connections.
- Developing in low cost, low power constrained computing environments has unique design challenges.
- Lessons learned: design principles for opportunistic communication.
Capacity of opportunistic communication systems is dependent on our ability to maximize communication during opportunistic connections.

Developing in low cost, low power constrained computing environments has unique design challenges.

Lessons learned: design principles for opportunistic communication.
Motivating opportunistic communication systems

Recent rapid explosion of cell/smartphones and other embedded wireless devices
- Recycled cell phones are abundant and affordable (1.15 billion in 2007)
 - Smartphone are projected to soon outsell laptops
 - Primary communication mechanism in developing regions

Devices with multiple radio interfaces
- Constantly connected over long range interfaces (cellular)
- Intermittent connectivity over short range interfaces (Wi-Fi, Bluetooth, etc.)

Devices can be highly mobile
- Embedded in vehicles
- Carried by users
Motivating opportunistic communication systems

- Recent rapid explosion of cell/smartphones and other embedded wireless devices
 - Recycled cell phones are abundant and affordable (1.15 billion in 2007)
 - Smartphone are projected to soon outsell laptops
 - Primary communication mechanism in developing regions
- Devices with multiple radio interfaces
 - Constantly connected over long range interfaces (cellular)
 - Intermittent connectivity over short range interfaces (Wi-Fi, Bluetooth, etc.)
- Devices can be highly mobile
 - Embedded in vehicles
 - Carried by users
Motivating opportunistic communication systems

- Recent rapid explosion of cell/smartphones and other embedded wireless devices
 - Recycled cell phones are abundant and affordable (1.15 billion in 2007)
 - Smartphone are projected to soon outsell laptops
 - Primary communication mechanism in developing regions

- Devices with multiple radio interfaces
 - Constantly connected over long range interfaces (cellular)
 - Intermittent connectivity over short range interfaces (Wi-Fi, Bluetooth, etc.)

- Devices can be highly mobile
 - Embedded in vehicles
 - Carried by users
Recent rapid explosion of cell/smartphones and other embedded wireless devices
- Recycled cell phones are abundant and affordable (1.15 billion in 2007)
- Smartphone are projected to soon outsell laptops
- Primary communication mechanism in developing regions

Devices with multiple radio interfaces
- Constantly connected over long range interfaces (cellular)
 - Intermittent connectivity over short range interfaces (Wi-Fi, Bluetooth, etc.)
- Devices can be highly mobile
 - Embedded in vehicles
 - Carried by users
Motivating opportunistic communication systems

- Recent rapid explosion of cell/smartphones and other embedded wireless devices
 - Recycled cell phones are abundant and affordable (1.15 billion in 2007)
 - Smartphone are projected to soon outsell laptops
 - Primary communication mechanism in developing regions
- Devices with multiple radio interfaces
 - Constantly connected over long range interfaces (cellular)
 - Intermittent connectivity over short range interfaces (Wi-Fi, Bluetooth, etc.)
- Devices can be highly mobile
 - Embedded in vehicles
 - Carried by users
Motivating opportunistic communication systems

- Recent rapid explosion of cell/smartphones and other embedded wireless devices
 - Recycled cell phones are abundant and affordable (1.15 billion in 2007)
 - Smartphone are projected to soon outsell laptops
 - Primary communication mechanism in developing regions
- Devices with multiple radio interfaces
 - Constantly connected over long range interfaces (cellular)
 - Intermittent connectivity over short range interfaces (Wi-Fi, Bluetooth, etc.)
- Devices can be highly mobile
 - Embedded in vehicles
 - Carried by users
What is wireless opportunistic communication?

Exploiting intermittent periods of wireless connectivity to exchange data with infrastructure and other devices.

Earl Oliver, Prof. Keshav

Mobicom 2008, WiNS-DR
Application that use opportunistic communication

- **Drive-by wireless**
 - Delay tolerant networking
 - Intermittent connectivity between DTN nodes.
 - Ex. two Zebras come nearby, transfer data.
- **Pocket switched networking**
 - Data disseminated between mobile devices.
- **BlueTorrent and opportunistic Podcasting**
 - Fragments of data are exchanged between pairs of devices.
Application that use opportunistic communication

- Drive-by wireless
- Delay tolerant networking
 - Intermittent connectivity between DTN nodes.
 - Ex. two Zebras come nearby, transfer data.
- Pocket switched networking
 - Data disseminated between mobile devices.
- BlueTorrent and opportunistic Podcasting
 - Fragments of data are exchanged between pairs of devices.
Application that use opportunistic communication

- **Drive-by wireless**
- **Delay tolerant networking**
 - Intermittent connectivity between DTN nodes.
 - Ex. two Zebras come nearby, transfer data.
- **Pocket switched networking**
 - Data disseminated between mobile devices.
- **BlueTorrent and opportunistic Podcasting**
 - Fragments of data are exchanged between pairs of devices.
Application that use opportunistic communication

- **Drive-by wireless**
- **Delay tolerant networking**
 - Intermittent connectivity between DTN nodes.
 - Ex. two Zebras come nearby, transfer data.
- **Pocket switched networking**
 - Data disseminated between mobile devices.
- **BlueTorrent and opportunistic Podcasting**
 - Fragments of data are exchanged between pairs of devices.
Application that use opportunistic communication

- **Drive-by wireless**
- **Delay tolerant networking**
 - Intermittent connectivity between DTN nodes.
 - Ex. two Zebras come nearby, transfer data.
- **Pocket switched networking**
 - Data disseminated between mobile devices.
- **BlueTorrent and opportunistic Podcasting**
 - Fragments of data are exchanged between pairs of devices.
We motivate challenges in opportunistic communication by considering two existing systems:

- KioskNet
- MobiClique
What is KioskNet?

A mobile system that provides low cost Internet to developing regions.

- Uses buses and cars as **mechanical backhaul** to carry data to and from rural village kiosks and Internet gateways.

How KioskNet works

- Low cost, low power **Kiosk Controller** located in rural village.
- Data created by villagers fragmented into bundles and stored on the Kiosk Controller.
- Bundles transferred to a **Ferry** as it drives through a village.
- Ferries upload/download data to and from Internet **Gateway**.
- Gateway forwards data over the Internet to a **Proxy**.
KioskNet

What is KioskNet?
A mobile system that provides low cost Internet to developing regions.

- Uses buses and cars as **mechanical backhaul** to carry data to and from rural village kiosks and Internet gateways.

How KioskNet works
- Low cost, low power *Kiosk Controller* located in rural village.
- Data created by villagers fragmented into bundles and stored on the Kiosk Controller.
 - Bundles transferred to a *Ferry* as it drives through a village.
 - Ferries upload/download data to and from Internet *Gateway*.
 - Gateway forwards data over the Internet to a *Proxy*.
KioskNet

What is KioskNet?

A mobile system that provides low cost Internet to developing regions.

- Uses buses and cars as **mechanical backhaul** to carry data to and from rural village kiosks and Internet gateways.

How KioskNet works

- Low cost, low power *Kiosk Controller* located in rural village.
- Data created by villagers fragmented into bundles and stored on the Kiosk Controller.
- Bundles transferred to a *Ferry* as it drives through a village.
- Ferries upload/download data to and from Internet *Gateway*.
- Gateway forwards data over the Internet to a *Proxy*.
KioskNet

What is KioskNet?

A mobile system that provides low cost Internet to developing regions.

- Uses buses and cars as **mechanical backhaul** to carry data to and from rural village kiosks and Internet gateways.

How KioskNet works

- Low cost, low power **Kiosk Controller** located in rural village.
- Data created by villagers fragmented into bundles and stored on the Kiosk Controller.
- Bundles transferred to a **Ferry** as it drives through a village.
- Ferries upload/download data to and from Internet **Gateway**.
- Gateway forwards data over the Internet to a **Proxy**.
KioskNet

What is KioskNet?
A mobile system that provides low cost Internet to developing regions.

- Uses buses and cars as **mechanical backhaul** to carry data to and from rural village kiosks and Internet gateways.

How KioskNet works
- Low cost, low power *Kiosk Controller* located in rural village.
- Data created by villagers fragmented into bundles and stored on the Kiosk Controller.
- Bundles transferred to a *Ferry* as it drives through a village.
- Ferries upload/download data to and from Internet *Gateway*.
- Gateway forwards data over the Internet to a *Proxy*.
KioskNet Overview
KioskNet village deployment in Anandapuram, India

Figure 1: Overview of our system
MobiClique

What is MobiClique?
Form of pocket switched network that exploits natural human mobility and opportunistic wireless connections to disseminate data from device to device.

How MobiClique works
- System depends on intermediate devices to ferry data between source and destination.
- Continuous scanning for neighboring devices over Bluetooth.
- On establishing an opportunistic connection, devices exchange authenticating information and metadata.
Mobile devices operating in a pocket switched network

Opportunistic Connection
- identify and authenticate contact
- execute forwarding algorithm
- forward data to neighbouring device
Fundamental constraint

The effectiveness of each system is primarily bound by its ability to transfer data during an opportunistic connection.

To maximize the capacity of each system, we must maximize the quantity of data reliably exchanged during a wireless opportunistic connection.
Fundamental constraint

The effectiveness of each system is primarily bound by its ability to transfer data during an opportunistic connection.

To maximize the capacity of each system, we must maximize the quantity of data reliably exchanged during a wireless opportunistic connection.
Constrained computing environment poses challenges in opportunistic communication.

- **Limit energy consumption**
 - Must minimize heat and conserve battery life.
- **Limited RAM**
 - Frequent page swaps or allocation failures.
- **Low-power CPU**
 - Inhibits all CPU intensive operations (including wireless network I/O).
- **Poor and intermittent communication**
 - Packet losses cause backoffs.
- **Slow persistent storage**
 - Throughput is inhibited by reading from persistent storage.

Discussion of resource constraints: [Oliver, MobiEval 2007]
Constrained computing environment poses challenges in opportunistic communication.

- **Limit energy consumption**
 - Must minimize heat and conserve battery life.
- **Limited RAM**
 - Frequent page swaps or allocation failures.
- **Low-power CPU**
 - Inhibits all CPU intensive operations (including wireless network I/O).
- **Poor and intermittent communication**
 - Packet losses cause backoffs.
- **Slow persistent storage**
 - Throughput is inhibited by reading from persistent storage.

Discussion of resource constraints: [Oliver, MobiEval 2007]
Constrained computing environment poses challenges in opportunistic communication.

- **Limit energy consumption**
 - Must minimize heat and conserve battery life.

- **Limited RAM**
 - Frequent page swaps or allocation failures.

- **Low-power CPU**
 - Inhibits all CPU intensive operations (including wireless network I/O).

- **Poor and intermittent communication**
 - Packet losses cause backoffs.

- **Slow persistent storage**
 - Throughput is inhibited by reading from persistent storage.

Discussion of resource constraints: [Oliver, MobiEval 2007]
Constrained computing environment poses challenges in opportunistic communication.

- **Limit energy consumption**
 - Must minimize heat and conserve battery life.

- **Limited RAM**
 - Frequent page swaps or allocation failures.

- **Low-power CPU**
 - Inhibits all CPU intensive operations (including wireless network I/O).

- **Poor and intermittent communication**
 - Packet losses cause backoffs.

- **Slow persistent storage**
 - Throughput is inhibited by reading from persistent storage.

Discussion of resource constraints: [Oliver, MobiEval 2007]
Constrained computing environment poses challenges in opportunistic communication.

- **Limit energy consumption**
 - Must minimize heat and conserve battery life.

- **Limited RAM**
 - Frequent page swaps or allocation failures.

- **Low-power CPU**
 - Inhibits all CPU intensive operations (including wireless network I/O).

- **Poor and intermittent communication**
 - Packet losses cause backoffs.

- **Slow persistent storage**
 - Throughput is inhibited by reading from persistent storage.

Discussion of resource constraints: [Oliver, MobiEval 2007]
Constrained computing environment poses challenges in opportunistic communication.

- **Limit energy consumption**
 - Must minimize heat and conserve battery life.

- **Limited RAM**
 - Frequent page swaps or allocation failures.

- **Low-power CPU**
 - Inhibits all CPU intensive operations (including wireless network I/O).

- **Poor and intermittent communication**
 - Packet losses cause backoffs.

- **Slow persistent storage**
 - Throughput is inhibited by reading from persistent storage.

Discussion of resource constraints: [Oliver, MobiEval 2007]
Constrained computing environment poses challenges in opportunistic communication.

- **Limit energy consumption**
 - Must minimize heat and conserve battery life.

- **Limited RAM**
 - Frequent page swaps or allocation failures.

- **Low-power CPU**
 - Inhibits all CPU intensive operations (including wireless network I/O).

- **Poor and intermittent communication**
 - Packet losses cause backoffs.

- **Slow persistent storage**
 - Throughput is inhibited by reading from persistent storage.

Discussion of resource constraints: [Oliver, MobiEval 2007]
Introduction
Constrained computing environment
Design principles for opportunistic communication
Conclusions

Constrained computing environments
Inside an opportunistic connection
Phases of an opportunistic connection

Scanning Phase
Continuous scanning of neighboring devices.

Setup Phase
Identify and authenticate contact.

Selection Phase
Select bundles to forward.

Data Phase
Bundles read from persistent storage and transmitted.
Phases of an opportunistic connection

Scanning Phase
Continuous scanning of neighboring devices.

Setup Phase
Identify and authenticate contact.

Selection Phase
Select bundles to forward.

Data Phase
Bundles read from persistent storage and transmitted.

Scanning phase
- Scan for neighbouring devices

Setup phase
- Metadata exchange, query local metadata to select forwarding bundles
- Exchange and ack data bundles

Selection phase
- Exchange and ack data bundles

Data phase
- Read, transmit, and store forwarding bundles and acks
- Connection lost
 - Resume scan for neighbouring devices
Phases of an opportunistic connection

Scanning Phase
Continuous scanning of neighboring devices.

Setup Phase
Identify and authenticate contact.

Selection Phase
Select bundles to forward.

Data Phase
Bundles read from persistent storage and transmitted.
Phases of an opportunistic connection

Scanning Phase
Continuous scanning of neighboring devices.

Setup Phase
Identify and authenticate contact.

Selection Phase
Select bundles to forward.

Data Phase
Bundles read from persistent storage and transmitted.
Design principles for opportunistic communication

- **Cache metadata.**
 - Querying a local database can be really expensive!
 - Use in-memory data structures.

- **Maximize the use of available memory and adapt to low memory conditions.**
 - Cache as much as possible!
 - Transferring bundles from memory can easily doubles wireless throughput.

- **Minimize redundant wireless data transfer.**
 - Connections are too short to waste.
 - Selective acknowledgements can go a long way.
Cache metadata.

- Querying a local database can be really expensive!
 - Use in-memory data structures.

- Maximize the use of available memory and adapt to low memory conditions.
 - Cache as much as possible!
 - Transferring bundles from memory can easily doubles wireless throughput.

- Minimize redundant wireless data transfer.
 - Connections are too short to waste.
 - Selective acknowledgements can go a long way.
Cache metadata.

- Querying a local database can be really expensive!
- Use in-memory data structures.

Maximize the use of available memory and adapt to low memory conditions.

- Cache as much as possible!
- Transferring bundles from memory can easily doubles wireless throughput.

Minimize redundant wireless data transfer.

- Connections are too short to waste.
- Selective acknowledgements can go a long way.
Design principles for opportunistic communication

- **Cache metadata.**
 - Querying a local database can be really expensive!
 - Use in-memory data structures.

- **Maximize the use of available memory and adapt to low memory conditions.**
 - Cache as much as possible!
 - Transferring bundles from memory can easily doubles wireless throughput.

- **Minimize redundant wireless data transfer.**
 - Connections are too short to waste.
 - Selective acknowledgements can go a long way.
Design principles for opportunistic communication

- **Cache metadata.**
 - Querying a local database can be really expensive!
 - Use in-memory data structures.

- **Maximize the use of available memory and adapt to low memory conditions.**
 - Cache as much as possible!
 - Transferring bundles from memory can easily doubles wireless throughput.

- **Minimize redundant wireless data transfer.**
 - Connections are too short to waste.
 - Selective acknowledgements can go a long way.
Design principles for opportunistic communication

- **Cache metadata.**
 - Querying a local database can be really expensive!
 - Use in-memory data structures.

- **Maximize the use of available memory and adapt to low memory conditions.**
 - Cache as much as possible!
 - Transferring bundles from memory can easily doubles wireless throughput.

- **Minimize redundant wireless data transfer.**
 - Connections are too short to waste.
 - Selective acknowledgements can go a long way.
Design principles for opportunistic communication

- **Cache metadata.**
 - Querying a local database can be really expensive!
 - Use in-memory data structures.

- **Maximize the use of available memory and adapt to low memory conditions.**
 - Cache as much as possible!
 - Transferring bundles from memory can easily doubles wireless throughput.

- **Minimize redundant wireless data transfer.**
 - Connections are too short to waste.
 - Selective acknowledgements can go a long way.
Design principles for opportunistic communication

- **Cache metadata.**
 - Querying a local database can be really expensive!
 - Use in-memory data structures.

- **Maximize the use of available memory and adapt to low memory conditions.**
 - Cache as much as possible!
 - Transferring bundles from memory can easily doubles wireless throughput.

- **Minimize redundant wireless data transfer.**
 - Connections are too short to waste.
 - Selective acknowledgements can go a long way.
Explicitly distinguish between periods of connection and disconnection.

- During a connection: just transfer.
 - Exploit periods of non-connectivity to:
 - Refresh metadata.
 - Flush bundles from memory to disk.

- Use hysteresis
 - Lost connections may still be available, wait before closing them.
 - Being slow to react to events can improve performance.
- Explicitly distinguish between periods of connection and disconnection.
 - During a connection: just transfer.
 - Exploit periods of non-connectivity to:
 - Refresh metadata.
 - Flush bundles from memory to disk.

- Use hysteresis
 - Lost connections may still be available, wait before closing them.
 - Being slow to react to events can improve performance.
Explicitly distinguish between periods of connection and disconnection.

- During a connection: just transfer.
- Exploit periods of non-connectivity to:
 - Refresh metadata.
 - Flush bundles from memory to disk.

Use hysteresis

- Lost connections may still be available, wait before closing them.
- Being slow to react to events can improve performance.
Explicitly distinguish between periods of connection and disconnection.

- During a connection: just transfer.
- Exploit periods of non-connectivity to:
 - Refresh metadata.
 - Flush bundles from memory to disk.

Use hysteresis

- Lost connections may still be available, wait before closing them.
- Being slow to react to events can improve performance.
Current work

- Implementing these design principles in KioskNet 3.0.
Conclusions

- Developing software on low cost, low power constrained hardware differs from conventional PC environments.
- Although these principles are obvious in retrospect, they are not obvious to new system designers.
- Adding these properties to an existing system is non-trivial.
- Preliminary work has shown nearly an order of magnitude improvement in some circumstances.
Conclusions

- Developing software on low cost, low power constrained hardware differs from conventional PC environments.
- Although these principles are obvious in retrospect, they are not obvious to new system designers.
- Adding these properties to an existing system is non-trivial.
- Preliminary work has shown nearly an order of magnitude improvement in some circumstances.
Conclusions

- Developing software on low cost, low power constrained hardware differs from conventional PC environments.
- Although these principles are obvious in retrospect, they are not obvious to new system designers.
- Adding these properties to an existing system is non-trivial.
- Preliminary work has shown nearly an order of magnitude improvement in some circumstances.
Developing software on low cost, low power constrained hardware differs from conventional PC environments.

Although these principles are obvious in retrospect, they are not obvious to new system designers.

Adding these properties to an existing system is non-trivial.

Preliminary work has shown nearly an order of magnitude improvement in some circumstances.
Questions?